3 research outputs found

    Reducing the number of membership functions in linguistic variables

    Get PDF
    Dissertation presented at Universidade Nova de Lisboa, Faculdade de CiĂȘncias e Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics and Applications, specialization in Actuarial Sciences, Statistics and Operations ResearchThe purpose of this thesis was to develop algorithms to reduce the number of membership functions in a fuzzy linguistic variable. Groups of similar membership functions to be merged were found using clustering algorithms. By “summarizing” the information given by a similar group of membership functions into a new membership function we obtain a smaller set of membership functions representing the same concept as the initial linguistic variable. The complexity of clustering problems makes it difficult for exact methods to solve them in practical time. Heuristic methods were therefore used to find good quality solutions. A Scatter Search clustering algorithm was implemented in Matlab and compared to a variation of the K-Means algorithm. Computational results on two data sets are discussed. A case study with linguistic variables belonging to a fuzzy inference system automatically constructed from data collected by sensors while drilling in different scenarios is also studied. With these systems already constructed, the task was to reduce the number of membership functions in its linguistic variables without losing performance. A hierarchical clustering algorithm relying on performance measures for the inference system was implemented in Matlab. It was possible not only to simplify the inference system by reducing the number of membership functions in each linguistic variable but also to improve its performance

    Cidadania por um fio: o associativismo negro no Rio de Janeiro (1888-1930)

    Full text link

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore